CALL FOR PAPERS: Mitochondrial Function/Dysfunction in Health and Disease Metabolic and functional differences between brain and spinal cord mitochondria underlie different predisposition to pathology

نویسندگان

  • Alexander V. Panov
  • Nataliya Kubalik
  • Natalia Zinchenko
  • Daisy M. Ridings
  • David A. Radoff
  • Richelle Hemendinger
  • Benjamin R. Brooks
  • Herbert L. Bonkovsky
چکیده

Panov AV, Kubalik N, Zinchenko N, Ridings DM, Radoff DA, Hemendinger R, Brooks BR, Bonkovsky HL. Metabolic and functional differences between brain and spinal cord mitochondria underlie different predisposition to pathology. Am J Physiol Regul Integr Comp Physiol 300: R844–R854, 2011. First published January 19, 2011; doi:10.1152/ajpregu.00528.2010.—Mitochondrial dysfunctions contribute to neurodegeneration, the locations of which vary among neurodegenerative diseases. To begin to understand what mechanisms may underlie higher vulnerability of the spinal cord motor neurons in amyotrophic lateral sclerosis, compared with brain mitochondria, we studied three major functions of rat brain mitochondria (BM) and spinal cord mitochondria (SCM) mitochondria: oxidative phosphorylation, Ca sequestration, and production of reactive oxygen species (ROS), using a new metabolic paradigm (Panov et al., J. Biol. Chem. 284: 14448–14456, 2009). We present data that SCM share some unique metabolic properties of the BM. However, SCM also have several distinctions from the BM: 1) With the exception of succinate, SCM show significantly lower rates of respiration with all substrates studied; 2) immunoblotting analysis showed that this may be due to 30–40% lower contents of respiratory enzymes and porin; 3) compared with BM, SCM sequestered 40–50% less Ca , and the total tissue calcium content was 8 times higher in the spinal cord; 4) normalization for mitochondria from 1 g of tissue showed that BM can sequester several times more Ca than was available in the brain tissue, whereas SCM had the capacity to sequester only 10–20% of the total tissue Ca ; and 5) with succinate and succinate-containing substrate mixtures, SCM showed significantly higher state 4 respiration than BM and generated more ROS associated with the reverse electron transport. We conclude that SCM have an intrinsically higher risk of oxidative damage and overload with calcium than BM, and thus spinal cord may be more vulnerable under some pathologic conditions. (250)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic and functional differences between brain and spinal cord mitochondria underlie different predisposition to pathology.

Mitochondrial dysfunctions contribute to neurodegeneration, the locations of which vary among neurodegenerative diseases. To begin to understand what mechanisms may underlie higher vulnerability of the spinal cord motor neurons in amyotrophic lateral sclerosis, compared with brain mitochondria, we studied three major functions of rat brain mitochondria (BM) and spinal cord mitochondria (SCM) mi...

متن کامل

Peroxisomal Malfunction Caused by Mitochondrial Toxin 3-NP: Protective Role of Oxytocin

Peroxisomes are single membrane cell organelles with a diversity of metabolic functions. Here we studied the peroxisomal dysfunction and oxidative stress after 3-nitropropionic acid (3-NP) induced neurotoxicity and the possible protective effects of oxytocin. Adult male and female rats were subjected to Oxt and/or 3-NP treatment. The antioxidant enzymes, Superoxide dismutase (SOD) and Catalase ...

متن کامل

Peroxisomal Malfunction Caused by Mitochondrial Toxin 3-NP: Protective Role of Oxytocin

Peroxisomes are single membrane cell organelles with a diversity of metabolic functions. Here we studied the peroxisomal dysfunction and oxidative stress after 3-nitropropionic acid (3-NP) induced neurotoxicity and the possible protective effects of oxytocin. Adult male and female rats were subjected to Oxt and/or 3-NP treatment. The antioxidant enzymes, Superoxide dismutase (SOD) and Catalase ...

متن کامل

اثرات محافظتی رسوراترول در برابر اختلال عملکرد میتوکندریایی ناشی از پاراکوات

Background and purpose: Resveratrol (RSV) is a naturally existing polyphenolic compound abundantly found in grapes and several plants. It has potent free radical scavenger and antioxidative properties with significant effects in reducing oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to PQ induced tissue damage. In this study, the protective effect of RSV was invest...

متن کامل

Skeletal muscle mitochondrial health and spinal cord injury

Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic distur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011